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Summary

An attempt has been made to derive the F matrix of the reduced
normal equations in the most general set-up of four dimensional designs.
Some theorems pertaining to connectedness have been established.
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Introduction

Pearce [6] has considered designs of the type 0:00: SSS. Such
designs find use when further set of treatments are added to a Latin
square design. He also has given an analysis of such designs. Clarke
(3] has considered the analysis of a particular type of designs
eliminating three - way heterogeneity. The construction problem of .
such four dimensional designs is tackled by pathoff {7], Bose et al.
(2], Agrawaletal. [1], Paletal. [4]. Pal and Katyal (5] have considered
designs having multi - way heterogeneity. The F-matrix of the
reduced normal equations in the analysis of four - factor design is
derived. The results giving treatment connectedness of such designs
in four dimensional case is also discussed.

9. Model Under Three-Way Elimination of Heterogeneity Set-up

Consider a four way design having v treatments arranged in b
rows, b’ columns and b" symbols. Let Yynk denote the yield
corresponding to the k-th observation in the j-th row, h-th column,
1-th symbol having i-th treatment. '

* present Address : DCSR, Modipuram - 250 110, U.P.
+ Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, W.B.




ANALYSIS AND CONNECTEDNESS OF FOUR DIMENSIONAL DESiGNS 297

The linear additive model under the above four-way design

set-up is:

Yyt = p+ o4+ Byt yn+ 01+ Eynix

where u:

ay

By
Yh
0,

the general effect,

effect of i - th treatment; i=1, 2, .. .)v,

:effectofj-'throw;j=1,2,...,b,
:effectofh - thcolumn; h=1,2,... 1,

: effect of 1 - th symbol; 1=1, 2, ..., b",

~and Ey,'s are error components which are 1.i.d..N (0, o?), k can

assume at the most m-1 values, if we are considering this four - way
design as an m - ary design.

Let Mixb . Nuxb' . Puxy” be the treatment vs row, the treatment Vs
column, the treatment vs symbol incidence matrices respectively.
And Rpxty » Sbxb', Up xp» be the row vs column, row vs symbol and
column vs symbol incidence matrices respectively. Further, let

I= Ty To... .. V)5 B= (BB ... By ;-
C- (CLCy..Cyf:i D= (DyDa....Dy)s
a= (o, ag, ..., o) 3 B= BrBa.... B
Y= (¥ - o) 8= (01,02 ....8y) ;
I=(r, 2 ....n)andr’ = diag (r, ra. . . ., 1y)

k= (ki ko, . . ., k) and K* = diag (k), ko, . . ., kp) ;
€= (e1. &, ..., ep)and €’ = diag (e}, ey, . . ., ey)

f=

(fl. f2, ..., fy») and ff= diag (f1, fa, ... f ")

and n, the total number of experimental units.

Let 1 denote a column vector with all elements unity,

o
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J the matrix of all ones of appropriate order, .
and [ the identity matrix.
Then M'l=k N'l=e,P’ 1=f,M1=Nl1=Pl=r.

The normal equations are:

I=£ﬁ+ r (_I;._+Mﬁ+ Nf Pé. (2.1)
B-kp+ M g+ K f+Ry+ S " (22
C=¢p+ N §+ R B+ ey+ UB (2.3)
D=fpu+ Pa+ S f+U £+ f‘é 24

After algebraic manipulation we get the reduced normal equation to
estimate treatment effect as,

Fa=9 | . . (2.5)
Where,
= [(rﬁ- MK M))- (P- MKk 8) (f- S’k'GS)G P~ S’k“’M’)]
_[[(N— MKk R)- (P- MK S)(f® - S'’k®S)® (U'- S' K*R)}
[(€-R X*R)-(U-R K°S)(f-5'k*8)° (U~ S K*R)|
(V- RK® M)~ (U'- R K S)(*- &' k? S)® (P'- S kM) }]

(2.5a)

Q= [(1— M K*B)-(P- Mk*S) (- k*s)* (D-S' k° B) ]
[lN- MK R) - (P- MK S) @ - SK*S)¥ (U -S'K°R)}

(€-R K*R)-(U-S'K*S) -5 K*S)° (U -8’k R)
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[(C-R k*B)- (U-R' k*S) (-8 k*S)° (D-S' k* B) 1

(2.5b)
. 1 , 5 .
Let, F+ o @Cr)=r (I-M,) (2.6)
I- M, = r';‘F + l(lr’)
o = n m -
My=1-r°F l(1' )
o= 1-1T - n 2 (2.7)

3. Generalised Row Column Designs

DEFINITION 3.1: A generalised row - column design of o-th order is
defined as a design in which the estimates of row effects ignoring
treatment effects are orthogonal to the estimates of column effects
ignoring treatment effects. '

DEFINITION 3.2: A generalised row - column design of first order is "
a design in which ‘

(a) the estimates of row effects are orthogonal to the
estimates of column effects,

(b) the estimates of row effects are orthogonal to the
estimates of symbol effects and _
(c) the estimates of column effects are orthogonal to
- estimates of symbol effects. o \
Theé other ways of classifications in conditions (a), (b) & (c) above
are ignored in each case. : ~

If we write the matrix equations parallel to (2.5) for estimating
B. ¥ and @ i.e. we deal with equations of the type:

Fif=Q .FRy-g, Fsf= Qs
The equations of the type (2.6) are -

Fie o (kK) = K (I- M) .

R
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1 , s o
Fy + ;(EE) = e (I- Mog) .

Fg + %(if) = £ (I~ Mog) .

where

and M03=I—f-é F3—':T(

’

DEFINITION 3.3: A generalised row - column design of first order is
said to be commutative, if,

Mot Moj_,:" Moj . (for i= j;i,jE 1.2.3)
One can note that commutativity of these M, - matrices implies
occurrences of the same set of eigen vectors for My, Mgy & Mos-
DEFINITION 3.4: A generalised row-column design of first order is
said to be orthogonal if, :
Cov(f9)= Cov(f. 8) = Cov(y. 8)=0

 DEFINITION 3.5: A generalised row - column design of first order is
said to be treatment connected when all independent treatment
contrasts are estimable in the complete four - way design. ‘

THEOREM 3.1: The conditions

R==(

o
e

I)’

o

S=—(

[=
I

) and U=-=(ef)

i
8-
B

are sufficient for obtaining a generalised row-column design of first
order.

Proof: Recalling the definition 3.2 let us consider the condition (a),
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namely, the estimates of row effects are orthogonal to the estimates
of column effects ignoring other classifications (i.e. treatment and.
symbol). - : _

Now the reduced normal equations for estimation of row effects (ﬁ)
and column effects (y ) can be written as,

Flﬁ = Q |
A , the remainin classification’s being ignored,
& Fii=Q & g o

where F,, F,. Q;: Q, are given by,
F, = ®- Re*R ,F; = - RK' R
Q =B-Re’C.Q =C- k'-l?“’ B .
. In fact, Cov ('Ql. Q,) = Cov(B-Re®C,C-R k'B)
= Cov(B. C)- Cov (B, Rk B)- Cov (R €”°C, O+ Cov (Re’C, R' k™B)
—R>-KKk*Re?*- Re*e’o®+ Re’Rk* Ro*
By virtue of condition (a) (Definition 3.2) mentioned above,
Cov (Q1. Q2)= O
Or Re*RKk*R=R
ie. Rf=e’RK°
=  R=p(e)
n

Similaﬂy. Starting from the reduced normal equations for row effect
(B) and symbol effects (8) and solving as before, we get

1
=5 &
and column effect (y ) and symbol effects (6) would give,

U=2(D
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THEOREM 3.2: A commutative generahsed row - column design of
first'order which is

(a)  row treatment connected,
(b) column treatment connected,
and (c) symbol treatrhent connected,

may or may not be treatment connected. In fact, it could be
treatment disconnected.

Proof: For a commutative generalised row-column design of first
order, -if a contrast of the effects of the different levels of the
treatment factor, namely, s’ o with s’'r= OandM,s = u, s, where
U, is the efficiency factor, exists and the design is further row
- treatment connected, column - treatment connected and symbol-
treatment connected, given by (a), (b) and (c) above, then we have:

Mois = mis, Os pmy<1 , (3.6)
Mpzs = pes . Os pp<1 | ' (3-7A)
Moss = uss . 05.M3< 1 (3.8)
Whefe

u is the row - treatment efficiency factor,

Ug is the column - treatment efficiency factor,

ug is symbol - treatment efficiency factor,
Summing (3.6), {(3.7) & (3.8) we have

(Mor + Mog+ Mgz )s= (m+ ug+ ug)s

Now it is not necessary that‘po = W + Py + Mg is always less than
unity. If p, is less than unity, the commutative generalised

row-column design of first order is also treatinent connected when
(a), (b)and {(c) are true. Otherwise, even in case yu, is unity, the design

becomes treatment-disconnected.
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THEOREM 3.3: The conditions"

R= Mr®N - : - (3.9)
S = M P ‘ (3.10)
& U= NTI°P R ; (3.11)

are sufficient for a generalised row-column design of first to be.
orthogonal. :

Proqf Premultiplying both sides of (2. 1) by M’ r"5 and substracting
from (2.2), we get ‘

B-M'1r°T= (K-Mr*M)§+R- M r®N)y+(S-M 1 P)e
(3.12)

Now premultiplying both sides of (2.1) by N’ r° and subtracting from
(2.3), we get

c N 1r®T = (R'- N'r*"M)§+(e N’r"’N)y_+(U—N’r"’P)9
(3 13)

Now premultiplymg both sides of (2.1) by P’ r® and substracting

from (2.4), we get

D-Pr’T=(S-Pr°M) ﬁ+ U~ P r'bN)1+ #-P rP) 6 ]
. (3. 14)

Now applying the given conditions (3.9), (3.10) and (3. 11) to '(3.12).
(3.13) and (3.14), we have

B- Mr*T = (- Mr*M§

SNI*T= (- Nr* Ny

10

-Pr®T= F-Pr°pé

1o

Now Cov(B-MTr°T, C-Nr°T

= Cov (B, C)- Cov(M'r° T, _)—Cov(_ B, N'r?T) +
Cov(M'r?T,N'r°T)
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= Ro?- M'r*Cov (T, C)- Cov (B, T) r*N+ M’ r*Cov (T, T)r® N
=Ro>-Mr*No® - M'r*No? + M' r* P r® N o?.
=(R-M'r°N)o® = 0

Therefore, Cov (' ﬁ_f )‘ = 0.

Similarly, we can show that
Cov ( B- M IQ -Pr’T)= (S-M'r*pP) o’
Cov(f.8)=0

and Cov(C-Nr*T,D-P'r°T)= (U-N'r®P)c?
Cov(y':, é) =0 .

Hence the theorem is proved.

THEOREM 3.4: An orthogonal generalised row-column design of first
order in always commutative.

Proof: A generalised row - column design of first order is orthogonal
when ' ' :

WR= Mr?°N,(ii)S= M 1P, (iii) U = N’ r° P and further from
theorem 3.1, ‘

1

reLoren mse Lowe wu. Lo
c@R= 1 (ke);(b)S=(kf).()U=—(ef)

Therefore, corresponding F reduces to F', where
F=r°-Mk®M -Ne®*N -Pf*P + %(;;’)
Now we can write
' . Mo = Mo] + M02 + M03 , Where

Moy = I°MK*M - ‘rl—l(l r),

Moz

PNe*N - l(; ry,
. - n -
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Mgs = T°P°P - %(_1_ ).

Now we have to show that Mot and Moj commute for i §, 1, J = 1,2,
3, e.g. 'we show that Mo1 Moz = Moz Mo1:

L.HS. = {r*‘Mk*’M"-%Q;' )} {r'“Ne'aN’—‘%(lI')}

= r’'MKk*M'r°Ne™N'- %(L r)r*Ne® N - %‘r"’ Mk*M' (L ';_')'

= rNe*N'T°Mk™*M'- (r°N e®N) %@;’) - % ar) (rwkm')

+Lap L an.
Comparing first terms on both the sides,
since (MK*M') r* (Ne*N') = (Ne™N') r” :(Mk""M’)
and similarly for second and third t\erms. we see that LHS = RHS,
ie. Moy Moz = Moz Moy, |

‘and similarly we can show that Mg, Mg = Moz Mg;. and Mgg Mgy =
Mgg Mgs. i.€. an orthogonal generalised row-column design of first °
order is always commutative. :

THEOREM 3.5: An orthogohal generalised row - column design of
first order which is row - treatment, column - treatment and symbol
-treatment connected is always treatment connected.

Proof: consider an orthogonal generalised row - column design of
first order. :

We shall consider two exhaustive cases‘.
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Case - 1
Let a particular treatment effect contrast be estimated with

(ng = 0)<1 efficiency ( = loss of information) from the matrix Mg,, We
have : .

-5 -5 /] l 4 —
(Ne”N'-—(1r')s= M2 8 (3.15)

 Let U, and uy be loss of information or efficiency, when the same

treatmenteffect contrast is éstimated from My, and My, respectively,
ie. '

-5 -8 ’ _L ! =
(r M k M—n(Lz))§— Hi s (3.16)

(3.17) -
Premultiplying both sides of (3.15) by
(r‘aMk‘bM’— (15'))

1
n

and applying the condition that the design is orthogonal generalised
row - column design of first order, we have, ' ‘

(r*"Mk*M'-i(1r'))(r4Nk*‘>N'-l(lg))§
n —= n -
- uz(r*Mk*sM'—%(Lz'))g
- [(r‘aMk‘aRe‘éN’—%(_l_g’e'aN’))
; ‘lf Mk k) - l(1r') s
Lemienn) - L)

= uz(r*"Mk"sM’— (l_')) s

A
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/ [\ » o
= [(r"’Mk’a;ll- (ke)e? N’) - lS_re_lﬁ -r*Mk*kr'/n + %(lg_’) s

=u2(r"‘Mk*"M'—%(1_'))§

- [%(Lz’)—%(lz’) Lar ')+i(1r')]s(— os) .

1

_ -5 -8 [ 'l -
= u2(r Mk®M n(lz))E ~(3.18)

But R.H.S. by (3.18)is u,; s.
Henceu; = Oifuy = O.
Similarly, if we multiply both sides of (3.15) by

( PP - % (1r )) and Proceediné as before, we can show that
Wy= 0 if py= O. e |

But for orthogonal generalised row - column design of first order
W= M1+ P2t U3

and therefore, = p.2 < 1 in this case and the design is treatment
connected.

Similarly. we can show that if a particular treatment effect contrast
be estimated with u, loss of information from the matrix My, then

MOIS u; s .thenwecanseethatug;o us= 0 forp; < 1,
and when treatment effect contrast be estmated with loss of
information from the matrix Mos.

Case 2:
Let a particular treatment effect contrast be estimated with , =0,
Ho= 0 and p; = O efficiencies from the matrices My;, Mo, . and My,

respectively, thenp = p; + py + pg = 0 that is efficiency with respect
to My namely p, = 0

Hence, any treatment effect - contrast estimable from each of row,
column and symbol classifications is always estimable from the
whole design. Consequently, the design remains connected with
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respect to treatment Hence the theorem.

Alternative Proqf For an orthogonal row-column de31gn of first
order, let .

F, = 1 - MK*M
Fo = r° - Ne®N
F3 = r° - PP

Fi1°Fy= (FMK*M' ) (r* - Ne® N)

= -Ne*N'- MK*M +2(rr).
FirPFy 1P Fy= (r"-Ne‘a N'- M k™ M'+%§£’) (- r P £° P))

=r°—Ne'°N’—Mk‘6M’+%@£’)—Pf‘5P’

FNEN PP + M M P 2P - L @g) @« pre P’)_:-—f_

Itis eaby to check that each of the last three terms on the right is
equal (rr’) ‘

Thefefore.
Fir®Fr®F; = r- Mk‘a‘M.’. -N ef_ N’»— PP + %‘(;y)
=F
Nolwrit can be shown that -
F+—Lr)— (F1+—-Lr ))r x (F2+— cr )) (F3+— @r )) -
't‘hue when A'

- Rank F; = Rank Fy = Rank F3 =v - 1, then

y B
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Rank F = v-1 and vice-versa.

Hence - the theorem is proved.
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(4]

(5}
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